Curriculum Plan

(Odd Semester 2024-2025) Semester-III

Teacher Name: Dr. Rajita

Name of Paper, B.Sc. (H) -DSE, Green Synthesis in Organic Chemistry (3 Periods Per Week)

Contents	Allocation of Lectures	Month wise schedule to be followed	Tutorial/Assignments/ Presentation etc
UNIT – 1: Introduction (1 Week) Introduction to Green Chemistry, some important environmental laws, pollution prevention Act of 1990, emergence of green chemistry, need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry. Green chemistry in sustainable development.	One week	First week of August to third week of August	Doubt session, class test and Previous Year Papers Discussion
 UNIT – 2: Application of Green Chemistry Principles (12 Weeks) Principles of Green Chemistry and designing a chemical synthesis Concept familiarization and application of green chemistry principles using specific examples 1. Prevention of waste/ by products; waste or pollution prevention hierarchy 2. Green metrics to assess greenness of a reaction: Calculation of atom economy of the rearrangement, addition, substitution, and elimination reactions; calculation of E-factor for industrial processes 3. Prevention/ minimization of hazardous/ toxic products 4. Safer Solvent and Auxiliaries: Problems associated with conventional reaction media Some Common Green solvents: Introduction, application, advantages, and disadvantages of green solvents in organic synthesis (taking suitable examples). Special emphasis on the following: i. Super Critical Fluids (with special reference to carbon dioxide) ii. Water: Concept of In-water, and on- water reactions (with special reference to synthesis of terpinol and linalool in water, Benzoin condensation, Heck reaction) iii. Ionic Liquids: Physical properties and classification of Ionic Liquids (with special reference to Diels Alder reaction and Coumarin synthesis in 	Nine weeks	Last week of August to last week of November	Doubt Session, Previous years paper discussion, assignment

Calmenter Dhusicashamiash manantias		
Solvents: Physicochemical properties,		
Use of glycerol and its derivatives		
(Mizoroki–Heck reaction) and 2-		
methyltetrahydrofuran (Suzuki-Miyaura		
reaction).		
5. Design for energy efficiency:		
Phenomenon of accelerating organic		
reactions by using the following Green		
Chemistry tools (taking suitable		
examples) and its advantages: i		
Machanochomistruii Ultrasound assisted		
respections: Taking avamples like		
Simmons Smith reaction Dials Alder		
Similions Simili reaction, Diels– Alder		
reaction, iii. Microwave assisted		
reactions: Special emphasis on solvent-		
free synthesis- copper phthalocyanine		
and aspirin, In-water reactions-Hofmann		
Elimination, methyl benzoate to benzoic		
acid and Decarboxylation reaction; iv.		
Electrocatalysis: Taking examples like		
adiponitrile synthesis, synthesis of 3-		
bromothiophene. 16 v. Visible light		
induced Reactions: with examples such		
as, syntheses of caprolactam and vitamin		
D3, cis-trans isomerization of alkenes		
6. Use of renewable starting materials:		
Illustrate with few examples such as		
biodiesel bioethanol polymers from		
renewable resources (PLA from corn)		
Synthesis and properties of 2-		
Methyltetrahydrofuran furfural and 5-		
Aminolevulinic acid (DALA) from		
lavalinic acid		
7 Avoidance of unnecessary		
Avoidance of unnecessary		
blocking/protocting groups (tabing		
blocking/protecting groups (taking		
specific examples like selective oxidation		
of aldenydic group and synthesis of 6-		
Aminopenicillanic Acid (6-APA) from		
penicillin G		