Curriculum Plan: B.A (Programme) (Semester III) DSC-A3, Differential Equations (2024-25)

Dr. Mohd Nadeem			Marks	Theory -90	
Assistant Professor			Distribution		
Department of Mathematics				IA+CA-30+40	
Kalindi College		E			
University of Delhi					
Dell	hi- 110008		Classes Assigned	Theory: 3 per week	
E- mail:					
mohdnadeem.jmi@gmail.com					
Reference		References:			
		1. Myint-U, Tyn and De	bnath, Lokenath (20	07). Linear Partial Differential Equations for	
		Scientist and Engineers	(4th ed.). Birkhäuser	r. Indian Reprint.	
		2. Ross, Shepley L. (198	4). Differential Equ	ations (3rd ed.). John Wiley & Sons.	
		Suggestive Readings			
		• Edwards, C. Henry, Pe	enney, David E., &	Calvis, David T. (2015). Differential Equations	
		and Boundary Value Pro	blems: Computing	and Modeling (5th ed.). Pearson Education.	
		• Kreyszig, Erwin. (201	1). Advanced Engin	eering Mathematics (10th ed.). Wiley India.	
		• Sneddon I. N. (2006).	Elements of Partial	Differential Equations. Dover Publications.	
Section	Week	Topics			
	1 st week	First order ordinary diffe	erential equations: B	asic concepts and ideas, First order Exact	
		differential equations,			
	and		1		
2 nd week		Integrating factors and rules to find integrating factors, Linear equations			
		and Bernoulli equations,	Initial value proble	ms,	
	3 rd week	Applications of first orde	er differential		
		equations: Orthogonal tr	ajectories and Rate	problems;	
	4 th week	Basic theory of higher or	rder linear		
		differential equations, W	ronskian and its pro	operties.	
	5 th week	Assignment submis	ssion and class	test scheduled	

6 ^t	^h week	Linear homogeneous equations with constant coefficients			
7 ^t	^h week	, Linear non-homogeneous equations, Method of undetermined coefficients, Method of variation of parameters			
8 ^{ti}	^h week	, Two-point boundary value problems, Cauchy-Euler equations,			
9 ^{ti}	^h week	System of linear differential equations.			
10) th week	Classification and Construction of first-order partial differential equations			
		Semester break and Home Exam			
11	L th week	, Method of characteristics and general solutions of first-order partial differential equations			
12	2 th week	, Canonical forms and method of separation of variables for first order partial differential equations;			
13	th week	Classification and reduction to canonical forms of second-order linear partial differential equations and their general solutions.,			
14	th week	Classification and reduction to canonical forms of second-order linear partial differential equations and their general solutions.,			
15	5 th week	Classification and reduction to canonical forms of second-order linear partial differential equations and their general solutions.			
		Dispersal of classes, preparation leave and practical examination			