Curriculum Planner

(Department of Computer Science)

Course: B.A.(P) Computer Application

 \mathbf{V}

Semester:

Paper: Database Management Systems

Teacher Name: - Sushil Malik

S. No.	Unit Name	Chapters	References	Schedule(Ap proximate)
1.	Introduction to Database: Purpose of database system, Characteristics of database approach, data models, database management system, database system architecture, three-schema Architecture, components of DBMS, data independence, and file system approach vs database system approach.	1.1 - 1.3, 1.4 - 1.5, 1.6, 1.8, 2.1 - 2.2, 2.3.1, 2.4 -2.4.1, 2.6	1	October 2024
2.	Entity Relationship (ER) Modeling: conceptual data modeling - motivation, entities, entity types, attributes, relationships, relationship types, constraints on relationship, Entity Relationship diagram notation	3.1-3.7, 3.9.1	1	September 2024
3.	Relational Data Model: Update anomalies, Relational Data Model - Concept of relations, schema-instance distinction, keys, relational integrity constraints, referential integrity and foreign keys, relational algebra operators and queries.	5, 8.1 - 8.3.2, 8.4 (except 8.4.3) 8.5	1	
4.	Structured Query Language (SQL): Querying in SQL, DDL to create database and tables, table constraints, update database-update behaviours, DML, aggregation functions group by and having clauses, retrieve data from the database generate and guery views	6.1-6.4, 7 - 7.1.8 (except 7.1.4), 7.3.1- 7.3.2, 7.4	.1	October 2024
	Access and manipulate databases using ODBC. Basic Database administration SQL commands.	2*(Pg. 48), 3*(Listing 3.4)	2	
		11*(Pg. 356- 357), 18*(Pg. 532-552)	3	
5.	Database Design: Mapping an Entity Relationship (ER) model to relational database, functional dependencies and Normal forms, 1NF, 2NF, 3NF and BCNF decompositions and desirable properties of	9.1, 14.1 - 14.5 (up to page 488), Chapter 15 15.1.1 (only Armstrong Axioms without		November 2024

	them.	proof and the Closure of X under F to find the primary key)	1	
6.	Data Storage and Indexes: Need of file indexes, file organizations, index structures, single- and multi-level indexing, concurrent execution of transactions, ACID properties Revision, Doubt solving, Mock Practical	16.5, 17.1.1, 17.2 (up to page 613), 20.1.1- 20.1.3, 20.3	.1	

* Only for demonstration purpose.

References

- 1. Elmasri, R., Navathe, B. S. Fundamentals of Database Systems, 7th Edition, Pearson Education, 2015.
- 2. Silberschatz, A., Korth, H. F., Sudarshan S. Database System Concepts, 7th Edition, McGraw Hill, 2019.
- 3. Murach J. Murach's MySQL, 3rd edition, Pearson, 2019

Additional References

- 1. Ramakrishnan, R., Gehrke J. Database Management Systems, 3rd Edition, McGrawHill, 2014
- Silberschatz, A., Korth, H. F., Sudarshan S. Database System Concepts, 7th Edition, McGraw Hill, 2019.
- 3. Connolly, T. M., Begg, C. E. Database Systems: A Practical Approach to Design, Implementation, and Management, 6th edition, Pearson, 2019.