Curriculum Plan: B.Sc. (Hons) Mathematics (Semester III)- Discrete Mathematics 2024-25 Odd Sem

		-		-
Dr. Rajni Kanwar			Marks	Theory - 90
Assistant Professor			Distribution	
Department of Mathematics				Internal Assessment- 30
Kalindi College				Practical - 40
University of Delhi				
Delhi- 110008			Classes	Lasturas 2 nonuceali
Mobile: 7607401426			Classes	Lectures: 3 per week
E- mail: rajnikanwar@kalindi.du.ac.in			Assigned	
References		1. Davey, B. A., & Priestley, H. A. (2002). Introduction to Lattices and Order (2nd ed.).		
		Cambridge University press, Cambridge.		
		2. Goodaire, Edgar G., & Parmenter, Michael M. (2006). Discrete Mathematics with Graph		
		Theory (3rd ed.). Pearson Education Pvt. Ltd. Indian Reprint.		
		3. Lidl, Rudolf & Pilz, Gunter. (2004). Applied Abstract Algebra (2nd ed.), Undergraduate		
Texts in Mathematics. Springer (SIE). Indian Reprint		an Reprint		
	Week	Topics		
	1 st week	The cardinality of a set		
	2 nd week	Definitions, examples and basic properties of partially ordered sets		
	3 rd week	Order-isomorphisms, Covering relations, Hasse diagrams		
	4 th week	Dual of an ordered set, Duality principle, Bottom and top elements, Maximal and minimal elements		
	5 th week	Zorn's lemma, Building new ordered sets, Maps between ordered sets		
	^{6th} week Class Test and Lattices as ordered sets, Lattices as algebraic structures,			s as algebraic structures,
	7 th week	Sublattices, Products, Lattice isomorphism		
	8 th week Definitions, examples of modular and distributive lattices		tive lattices	
	9 th week Properties of modular and distributive lattices			
10 th week		The M3–N5 theorem with applications, Complemented lattice, Relatively complemented lattice,		
		Sectionally complemented lattice		
	11 th week	Class Test and Boolean algebras, De Morgan's laws, Boolean homomorphism		
	12 th week	Representation theorem, Boolean polynomials, Boolean polynomial functions, Equivalence of		
		Boolean polynomials		
	13 th week	Disjunctive normal form and conjunctive normal form of Boolean polynomials		
	14 th week	Minimal forms of Boolean polynomials, Quine-McCluskey method, Karnaugh diagrams		
	15 th week Integrability Switching circuits and applications, Applications of Boolean algebras to logic, set 1			s, Applications of Boolean algebras to logic, set theory
		and probability theory and C	lass test	