Curriculum Planner

B.Sc. (Hons) Vth Semester Department of Computer Science DISCIPLINE SPECIFIC CORE- Theory of Computation Name of the Teacher: - Dr. Dharmendera Kumar Meena

Unit	Торіс	Chapter	Refer ence	Month
1. Introduction	Alphabets, string, language, basic operations on language, concatenation, union, Kleene star.	2	[1]	August 2024
2. Finite Automata and Regular Languages	Regular expressionsDeterministic Finite Automata (DFA)Transition graphs (TG)Non-deterministic finite automata (NFA),Relationship between NFA and DFAThe relationship between regular languages andfinite automata (Converting RE into FA andvice-versa), Kleene's TheoremProperties of regular languages(Proof of Theorem 12 using De Morgan's law isto be done intuitively only)Pumping lemma for regular grammars(Excluding Myhil-Nerode theorem & Quotient	4 5 6 7 7 8 (Excluding Pages 175- 179) 10 (Till Page 195)	 [1] [1] [1] [1] [1] [1] 	Septemb er 2024
3. Context-Free Languages (CFL)	Languages) Class Test-1 Context-free grammars (CFG), Parse trees (Excluding Lukasiewicz notation), Ambiguities in grammars Deterministic and non-deterministic Pushdown Automata (PDA) Chomsky Normal Form, Leftmost derivation, Properties of CFL (Excluding mixing context-	12 (except pages 246- 249) 14 13 (Page 275 onwards) 17 (upto Pg	[1]	October 2024
4. Turing Machines and Models of Computations	free and regular languages) Pumping lemma for CFL Class Test-2 Turing machine as a model of computation, configuration of Turing machine, Recursive and recursively enumerable languages Church Turing Thesis, Universal Turing Machine, decidability, Halting problem Revision, Doubt solving, Mock Practical	388) 16 (Till page 370) 4 (upto 4.2) 5 (upto 5.3 except page 252)	[2]	November 2024

References

1. Cohen, D. I. A. (2011). Introduction to Computer Theory. 2nd edition. Wiley India.

2. Lewis, H.R. & Papadimitriou, H. R. (2002). Elements of the Theory of Computation. 2nd edition. Prentice Hall of India (PHI)