CURRICULUM PLAN

(Odd Semester, 2024-2025)

B.Sc. (P) Life Science: Chemistry, II Year (Semester III), NEP-

UGCF 2022 Name of the teacher: Dr. Upasana Issar

Name of Paper: DISCIPLINE SPECIFIC CORE COURSE -7: Chemistry -III

Chemical Energetics and Equilibria

UPC: 2172512302

One Lecture Per Week

Contents	Allocation of Lectures	Month wise schedule to be followed	Tutorial/Assignments /Presentation etc
 UNIT-1: Chemical Energetics Recapitulation of Intensive and extensive variables; state and path functions; Isolated, closed and open systems <i>First law</i> Concept of heat (Q), work (W), internal energy (U), and statement of first law; enthalpy (H), relation between heat capacities for ideal gas, Joule's experiment, calculations of Q, W, ΔU and ΔH for reversible expansion of ideal gases under isothermal conditions. <i>Thermochemistry</i> Enthalpy of reactions: standard states; enthalpy of neutralization, enthalpy of ionization 	08	1 st August 2024 – 30 th September 2024	 Syllabus Overview Books Suggestions Related Examples and Problem solving session
 Unit 1 (Continued) Thermochemistry enthalpy of hydration, enthalpy of formation and enthalpy of combustion, Integral enthalpy of solution, bond dissociation energy and bond enthalpy; Hess's law, Born Haber's cycle (NaCl/ KCl). Second Law Concept of entropy; statements of the second law of thermodynamics (Kelvin and Clausius). 	08	1 st October 2024 -20 th November 2024	 Numerical Solving Doubt Session Test Assignment Previous university papers discussion

•	Calculation of entropy change for reversible processes (for ideal gases). Free Energy Functions: Gibbs and Helmholtz energy (Non-PV work and the work function); Free energy change and		
•	concept of spontaneity (for ideal		
	gases).		
Third Law			
•	Statement of third law, qualitative treatment of absolute entropy of molecules (examples of NO, CO), concept of residual entropy		

Uport.

Dr. Upasana Issar

Department of Chemistry