Curriculum Plan: B. Sc. (H) I (Semester I) Probability and statistics

Mr. Avneesh Kumar

Department of Mathematics Kalindi College, University of Delhi, Delhi-110008

Mobile: +91-9810668790

E- mail: avneeshkumar@kalindi.du.ac.in

Marks Theory 2L per week
Distribution

Internal Assessment

Total 30 Marks

Assignments 12 Marks

Home Ex 12 Marks

Attendance 6 Marks

90 Marks

Continuous Assessment 40 Marks

Reference	[1]	Devore, Jay L. (2016). Probability and Statistics for Engineering and the Sciences (9th ed.). Cengage Learning India Privat Limited. Delhi. Indian Reprint 2020.
	[2]	
	[3]	
Section	Week	Topics
	Ist week Aug, 29th – Sep 5th, 2024	
	I st week Aug, 29 th – Sep 5 th , 2024	Continuous random variables, Probability density functions, Uniform distribution,
	2^{nd} week Sep, $6^{th} - 13^{th}$, 2024	Continuous random variables, Probability density functions, Uniform distribution,
	3 nd week Sep, 14 th – 21 th , 2024	Continuous random variables, Probability density functions, Uniform distribution,
	4 th week Sep, 23 th – 30 th , 2024	
	5th week Oct, 1st - 8th, 2024	Cumulative distribution functions and expected values,
	6 th week, Oct, 9 th - 16 th , 2024	Bounded above and bounded below sets, Suprema and infima, The completeness axiom and the Archimedean
		property of ℝ
	7 th week Oct, 17 st – 25 th , 2024	The normal, exponential and lognormal distributions.
	8 th week Nov, 4 th - Nov 11 th , 2024	The normal, exponential and lognormal distributions.
	9th week Nov, 12th - 19th, 2024	Sampling distribution and standard error of the sample mean,
	10 th week Nov, 20 th - 27 th , 2024	Central Limit Theorem and applications;
	11th week Nov, 28th - Dec, 5th, 2024	Scatterplot of bivariate data, Regression line using principle of least squares,
	12 th week Dec, 6 th – 13 th , 2024	Scatterplot of bivariate data, Regression line using principle of least squares,
	13 th week Dec, 14 nd - 21 th , 2024	Estimation using the regression lines; Sample correlation coefficient and properties.
	14 th week Dec, 23 th - 28 th , 2024	Estimation using the regression lines; Sample correlation coefficient and properties.