Curriculum Plan (ODD SEM 2024-25): B.Sc.(H) Maths V Sem DSE-3 (il): Linear Programming and Applications

Teacher'S Profile			Marks	Theory	90 Marks	
			Distribution	Internal Assessment	30 Marks	
Hari Kishan Bhardwaj				Continuous Assessment	40 Marks	
Department of Mathematics,					Assignments -12 Marks	
Kalindi College, University of Delhi,		200			Test - 12 Marks	
Delhi- 110008					Attendance - 6 Marks	
Mobile: +91-9868053327			Classes Assigned	Lectures	3 Per Week	
Email: harikishan@kalindi.du.ac.in				Tutorial	1 Per Week	
Reference		1. Bazaraa, Mokhtar S., Jarvis, John J., & Sherali, Hanif D. (2010). Linear Programming and Network Flows (4th				
	ed.). John Wiley and Sons. Indian Reprint.					
		2. Hillier, Frederick S. & Lieberman, Gerald J. (2021). Introduction to Operations Research (11th ed.). McGraw-				
	Hill Education (India) Pvt. Ltd.					
		3. Taha, Hamdy A. (2017). Operations Research: An Introduction (10th ed.). Pearson.				
	Week Topics					_
	1 st Week (1-10 AUG)	Linear programming problem: Standard, Canonical and matrix forms				
	2 nd Week (12-17 AUG) Geometric solution, Convex and polyhedral sets, Hyperplanes, Extreme points 3 rd Week (19-24 AUG) Basic solutions, Basic feasible solutions					
	4 th Week (26-31 AUG)	Correspondence between basic feasible solutions and extreme points.				
	5 th Week (2-7 SEP)	Simplex Method: Optimal solution, Termination criteria for optimal solution of the linear programming problem				
	6 th Week (9-14 SEP)	Unique and alternate optimal solutions				
	7 th Week (16- 21 SEP)	Unboundedness; Simplex algorithm and its tableau format.				
8 th Week (23-28 SEP)		Artificial variables, Two-phase method, Big-M method.				
	9 th Week (30 SEP-05 OCT)	Duality Theory: Motivation and formulation of dual problem, Primal-Dual relationships				
	10 th Week (7-12 OCT)	Statements of the fundamental theorem of duality and complementary slackness theorem with examples.				
	11 th Week (14 -19 OCT)	Transportation Problem: Definition and formulation, Northwest-corner, Least-cost, and Vogel's approximation methods of finding initial basic feasible solutions				
	12 th Week (21-26 OCT)	Algorithm for solving transporta	tion problem.			
	13 th Week (4-9 NOV)	Assignment Problem: Mathematical formulation and Hungarian method of solving.				
	14 th Week (11-16 NOV)	Game Theory: Two-person zero sum game, Games with mixed strategies, Formulation of game to primal and dual linear programming problems,				
	15 th Week (18–23 NOV)	Solution of games using duality.				
	16 th Week (25-28 NOV)	Revision				